Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program

نویسندگان

  • Stephen D. Unwin
  • Paul W. Eslinger
  • Kenneth I. Johnson
چکیده

DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ABSTRACT The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk-Informed Safety Margin Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety Analysis

The concept of “margin” has a long history in nuclear licensing and in the codification of good engineering practices. However, some traditional applications of “margin” have been carried out for surrogate scenarios (such as design basis scenarios), without regard to the actual frequencies of those scenarios, and have been carried out in a systematically conservative fashion. In the RISMC proje...

متن کامل

Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

In the Risk-Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stoch...

متن کامل

Generation and Use of Reduced Order Models for Safety Applications Using RAVEN

INTRODUCTION The Risk-Informed Safety Margin Characterization (RISMC) [1] Pathway (as part of the Light Water Sustainability (LWRS) Program [2]) aims to develop simulation-based tools and methods to assess risks for existing Nuclear Power Plants (NPPs). This Pathway, by developing new methods, is extending the Probabilistic Risk assessment (PRA) stateof-the-practice methods [3] which have been ...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

A Perspective on the Use of Risk Informed Safety Margin Characterization to Support Nuclear Power Plant Long Term Operation

In this paper we describe application of the Risk Informed Safety Margin Characterization (RISMC) approach to enhancements of nuclear power plants that are important to decisions associated with their long term operation. The RISMC approach was used to assess changes in safety margins that would occur due to hypothetical extended power uprates for a PWR loss of feedwater event and a BWR station...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012